# A New Era of Holo-AI

<sup>1</sup>Rayyan Khan, <sup>1</sup>Anmol Sharma, <sup>1</sup>A. Raiyan Ahmed, <sup>1</sup>Mohammed Rayaan Khan, and <sup>2</sup>Mohammed Mujahid Ulla Faiz, https://orcid.org/0000-0001-8676-8624

<sup>1</sup>CSE Department, <sup>2</sup>ECE Department

<sup>12</sup>Presidency University, Bengaluru, 560064, Karnataka, India

Corresponding Author: \*Mohammed Mujahid Ulla Faiz (email: mohammed.mujahid@presidencyuniversity.in)

Abstract-This research endeavor seeks to revolutionize and advance holographic technology, aiming for a substantial influence on contemporary technological landscapes. Our primary goal is to develop an advanced holographic system that mirrors the sophisticated features of volumetric display projections depicted in media. Central to this development is the integration of a cutting-edge Artificial Intelligence (AI) in the holographic technology, named Holographic-AI or Holo-AI, designed to improve the realism, responsiveness, and user interaction capabilities of holographic projections. This study is crucial for advancing our understanding of how AI and holography can be combined to create practical and functional assistants for everyday use. By exploring the technological requirements, addressing the challenges, and examining the potential applications, this research aims to pave the way for future developments. The findings could significantly impact various fields, including healthcare, education, business, entertainment, and security, by enhancing productivity and providing innovative solutions to complex problems.

Index Terms—AI, Deep Learning, Holo-AI, Hologram, Holograph.

### I. INTRODUCTION

Holography, a technique for creating three-dimensional images by recording the interference pattern of light beams from a coherent light source such as a laser, has undergone significant evolution since its invention in the 1940s by Dennis Gabor. Gabor's pioneering work, which earned him the Nobel Prize in Physics in 1971, laid the foundation for various forms of holography, including digital and acoustic holography. Concurrently, Artificial Intelligence (AI) has progressed remarkably from its inception in the mid-20th century, encompassing technologies like Natural Language Processing (NLP), machine learning, and complex decision-making algorithms. The convergence of holography and AI promises to revolutionize multiple sectors by creating intelligent, interactive holographic assistants that offer immersive and intuitive user experiences.

Some of the key advancements in holography include the following. Laser Holography: Introduced in the 1960s, laser holography improved the resolution and clarity of holographic images. Digital Holography: This technique uses digital sensors and reconstruction algorithms, allowing for real-time hologram creation and manipulation. Acoustic Holography: Utilizing sound waves, this method can image through opaque materials and has applications in medical imaging and non-destructive testing.

Holographic-Type Communication (HTC) enables the ability to transmit and interact with holographic data across a network remotely. The state-of-the-art in hologram capture

and creation was described in [1]. The current streaming techniques for holograms were also reviewed in [1]. A number of solutions were then presented for the various challenges faced by the holographic-type communication in [1]. A novel interactive slim-panel holographic video display that was proposed in [2] using a steering-backlight unit and a holographic video processor has the potential to accelerate the adoption of the holographic video for mobile devices. Metasurface holography exhibits superior performance over conventional holography because of its appealing features such as massive design freedoms. Some recent developments in metasurface holographic technologies were reviewed in [3]. A new technique called Adaptive Interferenceless Coded Aperture Correlation Holography (AI-COACH) was coined in [4]. Results adequately demonstrated that AI-COACH technology possesses fast, adaptive, and high-quality imaging capability as compared to the Interferenceless Coded Aperture Correlation Holography (I-COACH) technology [4].

The trending humanoid intelligent agents or holographic Als promise an improved delivery of personalized services on smart glasses and in augmented reality. A comparative analysis of nine intelligent agents who can interact with both physical and virtual surroundings was conducted in [5] with an intention of providing clarity to the developers of these novel agents. The fundamentals and fabrications of holographic sensors were reviewed in [6] focusing on their biotechnology applications in various analytical settings. The Reconfigurable Holographic Surface (RHS) is considered for future 6G wireless communication networks as the RHS can achieve accurate beam steering with low power consumption and hardware cost by leveraging the holographic technique [7]. A modular holographic display system called "holobricks" was proposed and demonstrated in [8] that allowed seamless spatial tiling of multiple coarse integral holographic displays.

Holography and its significant benefits were explored in [9] through various development processes, features, and applications, with a focus on 'Holography for Industry 4.0'. A review of various computer-generated hologram algorithms was provided in [10], which aim to overcome some of the difficulties such as limited speed, limited reconstruction quality, etc. A comprehensive literature review on the recent progress of deep holography, an emerging interdisciplinary research field that is mutually inspired by holography and deep neural networks was presented in [11]. The state-of-the-art holographic point cloud video transmission techniques

were reviewed in [12] and the critical challenges of delivering such immersive services were also highlighted in [12]. The application of virtual technology such as artificial intelligence, augmented reality, and hologram in Netflix Korean Dramas was described in [13]. The creation and usage of holographic Als was investigated by creating specific holographic Als in [14]. An artificial intelligence framework is proposed by utilizing holographic multiple-input multiple-output assisted integrated sensing, localization, and communication in order to guarantee mass connectivity, high integration, and lower power consumption for generating the required beamforming in the sixth-generation wireless communication networks [15]. A study was conducted in [16] for improving the efficiency and quality of teaching by combining the latest holographic and AI technologies. Finally, the capabilities of wireless networks to meet the demands of HTC was explored in [17].

In the current landscape, our team is actively engaged in the development of an advanced artificial intelligence holographic system known as Holo-AI. This cutting-edge system is purpose-built to enhance the functionalities of existing holographic devices. Through its innovative capabilities, Holo-AI aims to redefine the user experience with holographic technologies, offering heightened intuitiveness, responsiveness, and user-friendliness.

The integration of Holo-AI with both the Holovect device and the acoustic trapping system aims to harness the strengths of light field technology and acoustic holography. Light field technology enables the creation of highly detailed and lifelike holograms, while acoustic holography offers a method for real-time manipulation of these holograms. By merging these technologies with Holo-AI's deep learning capabilities, we can develop versatile and highly interactive holographic experiences that are not only visually impressive but also highly responsive and user-friendly. This innovation marks a significant advancement in holographic technology, expanding the possibilities and establishing new standards for user interaction and engagement.

# II. EMERGING PARADIGM

Holographic technology has long captivated public and academic interest, often spurred by science fiction portrayals. Although traditional holography has made notable strides, it still grapples with technical challenges such as image fidelity, interaction latency, and projection stability. This project aims to address these challenges by introducing a new paradigm in holographic technology, leveraging state-of-the-art AI to push the boundaries of what is possible.

The potential applications of advanced holographic technology are vast, spanning fields from entertainment and education to healthcare and professional training. By creating a more interactive and realistic holographic experience, we seek to unlock new possibilities for presenting and interacting with digital information. This research is not only about overcoming current technical limitations but also about redefining user experiences and setting new benchmarks for future innovations.

Holo-AI Integration:

Holo-AI is an advanced artificial intelligence system designed to function within the holographic environment. By integrating deep learning algorithms and extensive training on diverse datasets, Holo-AI can provide highly contextual and informative interactions. This system is not a passive display but an active participant in the user experience, capable of understanding and responding to a broad range of commands and queries in real-time.

Integrating AI with holograms can transform the way we interact with digital information and machines. An AI-powered holographic assistant could handle an array of tasks, from managing daily schedules and providing expert advice in real-time to performing complex simulations and data analysis. This integration combines the three-dimensional, immersive quality of holograms with the cognitive and adaptive capabilities of AI, resulting in a highly interactive and user-friendly interface. Such holograms could bridge the gap between digital data and human interaction, making technology more accessible and functional.

Enhancing the Future with AI Integration:

The integration of cutting-edge AI, particularly Holo-AI, plays a pivotal role in propelling the holographic technology project into the future. By harnessing the capabilities of AI, our project aims to bring about significant enhancements and pave the way for future developments in multiple aspects.

Revolutionizing User Experience:

Holo-AI is designed not only to respond to user commands but also to understand context, anticipate needs, and provide proactive assistance. This level of intelligence and adaptability can transform the way users interact with holographic displays, setting new standards for user experience across various applications.

Advancing Interactive Capabilities:

The incorporation of Holo-AI enables the holographic system to evolve beyond passive display functions. With AI-driven adaptive learning and real-time responsiveness, users can expect increasingly intuitive and personalized interactions, thus pushing the boundaries of what holographic technology can offer.

Driving Innovation and Multidisciplinary Collaboration:

The utilization of advanced AI fosters interdisciplinary collaborations, bringing together experts in AI, holography, human-computer interaction, and other relevant fields. This collaborative approach not only accelerates the progress of the current project but also lays a foundation for future innovations that integrate AI into emerging technologies.

Enabling Adaptive and Autonomous Systems:

Through the integration of AI, specifically in the acoustic trapping system, the holographic display can adapt autonomously to dynamic conditions and user interactions. This autonomous adaptability is essential for creating versatile applications across diverse environments, from interactive educational settings to real-time data visualization in professional domains.

Fostering Long-Term Development and Versatility:

The AI integration is geared towards long-term adaptive development, ensuring that the holographic system can continuously improve and cater to a wide array of future use cases and industries. This forward-thinking approach positions the project at the forefront of versatile applications, accounting for the ever-evolving demands of technological landscapes.

In essence, the integration of Holographic and AI-driven technologies in our holographic project not only addresses current technical challenges but also sets the stage for a future where holographic displays are seamlessly integrated into various facets of everyday life, revolutionizing how information is presented, shared, and interacted with time. The integration of Holo-AI aims to create a more lifelike and interactive holographic interface, enhancing user engagement and satisfaction.

Components of Holo-AI:

Natural Language Processing: Holo-AI will employ sophisticated NLP techniques to comprehend and interpret user commands, facilitating seamless and intuitive interactions. This involves utilizing large language models trained on diverse corpora to handle a wide range of conversational contexts and linguistic nuances.

Computer Vision: Incorporating computer vision capabilities will enable Holo-AI to recognize and adapt to user movements and gestures, further enhancing the interactive experience. This includes real-time tracking and analysis of user gestures and facial expressions to provide responsive feedback.

Adaptive Learning: Holo-AI will use machine learning algorithms to continually improve its responses and interactions based on user feedback and behaviour patterns. This component ensures that the AI becomes more effective and efficient over time, learning from interactions to better serve user needs.

Leap Motion Sensors:

Leap motion sensors play a crucial role in advancing holographic technology by providing precise and intuitive gesture control capabilities. Utilizing infrared sensors, leap motion can accurately track hand and finger movements in real-time, enabling natural interactions with holographic displays. This technology allows developers to create responsive applications where gestures such as swipes, taps, and circles directly manipulate holographic objects. These features enhance user engagement and immersion, facilitating the implementation of complex interactions like multi-gesture sequences and voice integration. By refining gesture recognition and integrating seamlessly with holographic display systems via APIs, leap motion ensures smooth communication and significantly enhances the overall user experience. This makes leap motion an essential tool for developing interactive and user-centered holographic applications.

These components will work together to ensure that Holo-AI can provide a highly immersive and responsive holographic experience, setting it apart from existing technologies.

Equation for Volumetric Display:

A volumetric display typically represents a three-dimensional field. The specific form of the equation for  ${\cal V}$ 

depends on the physical context, but its generalized form can often be represented as a solution to a partial differential equation. Here is a general form that incorporates sinusoidal functions, capturing wave-like behavior:

$$V(x, y, z, t) = A \cos(ax + \omega t)$$
  
+  $B \sin(by + \omega t) + C \cos(cz + \omega t),$  (1)

where V is the volume intensity at a given point in space and time, (x,y,z) denote the spatial coordinates within the volume,  $\omega$  is the angular frequency, t is time, (A,B,C) are amplitudes representing the strength of the spatial frequency components, and (a,b,c) are the spatial frequencies determining the number of oscillations per unit distance along each axis.

The volumetric display equation describes the intensity of the displayed volume as a function of spatial coordinates (x,y,z) and time t. The derivation of this formula involves the principles of Fourier analysis and the superposition of sinusoidal functions, which allows complex waveforms to be expressed as a sum of simpler sinusoidal functions. Equation (1) represents the combination of sinusoidal waves in three dimensions. Each term in the equation contributes to the overall intensity of the volumetric display at a specific point in space and time.

The spatial frequencies (a,b,c) determine the number of oscillations per unit distance along each axis, influencing the spatial variation of the display. The amplitudes (A,B,C) control the strength of each component, affecting the overall brightness and contrast of the display. By adjusting these parameters, the volumetric display can create complex three-dimensional patterns and visualizations.

Understanding this equation is essential for designing and optimizing volumetric display systems, as it provides insight into the creation of complex three-dimensional patterns and visualizations within the display volume. By manipulating the parameters in the equation, engineers and researchers can tailor the displayed content to achieve desired visual effects and optimize the performance of volumetric display technology.

Acoustic Trapping System:

A crucial element of our holographic system is the acoustic trapping mechanism. This technology allows for the precise manipulation of particles within a defined space, enabling the creation of stable and high-resolution volumetric displays. By incorporating Holo-AI into the acoustic trapping system, we aim to achieve a level of precision and adaptability previously unattainable. This enhancement will allow the holographic display to adjust dynamically to various environmental conditions and user interactions, ensuring a seamless and immersive experience.

Elements of the Acoustic Trapping System:

Particle Manipulation: Utilizing ultrasonic waves to manipulate particles, creating stable and detailed holographic images. This involves the precise control of acoustic fields to position particles accurately in three-dimensional space. This combination of advanced AI and precise particle manipula-

tion will result in a holographic system that is both highly interactive and visually impressive.

Dynamic Adjustments: The system will be capable of adjusting in real-time to changes in the environment and user interactions, maintaining a high level of image stability and quality. This requires advanced algorithms to continuously monitor and adjust the acoustic fields based on real-time data.

Integration with Holo-AI: By integrating Holo-AI, the acoustic trapping system will be able to respond to user commands and interactions, enhancing the overall experience. This synergy between AI and acoustic manipulation is crucial for creating a truly interactive holographic display.

# III. PROPOSED METHODOLOGY

To achieve our objectives, we will follow a structured methodology involving several phases such as:

Design and Development: Creating the initial prototypes of the holographic system and integrating Holo-AI. This phase will involve close collaboration between AI experts, holography specialists, and user experience designers to ensure that all aspects of the system are effectively integrated.

Simulation and Testing: Running extensive simulations to test various aspects of the system, identifying and addressing any shortcomings. This phase will involve both virtual simulations and physical testing to ensure the system performs well in a variety of conditions.

*User Testing:* Engaging with users to gather feedback on the system's performance and making necessary adjustments. This phase will involve both qualitative and quantitative feedback to identify areas for improvement and ensure the system meets user needs.

Refinement and Optimization: Iteratively refining the system based on testing outcomes to ensure optimal performance and user satisfaction. This phase will involve ongoing testing and feedback to continually improve the system.

Each phase will be documented in detail to ensure that the development process is transparent and reproducible, allowing for continuous improvement and adaptation.

## IV. PROPOSED TECHNICAL EVALUATION

Our simulation will rigorously evaluate several technical aspects essential to the success of this project such as:

*Image Quality:* Ensuring high-resolution and lifelike visuals that can adapt in real-time to changes in user perspective and interaction. This involves optimizing the resolution, contrast, and color accuracy of the holographic images.

*Projection Stability:* Maintaining consistent and stable holographic projections even in varying environmental conditions. This includes testing the system's resilience to changes in lighting, temperature, and physical disturbances.

Interaction Speed: Achieving low-latency responses to user inputs, creating a fluid and natural interaction experience. This requires minimizing the delay between user commands and system responses.

AI Adaptability: Evaluating Holo-AI's ability to learn and adapt to new commands and situations, improving over time

to meet user needs more effectively. This involves assessing the AI's ability to handle a wide range of interactions and continuously improve its performance based on user feedback.

#### V. EXPECTED OUTCOMES

Through detailed testing and refinement, we aim to overcome current limitations in holographic technology, transforming it into an intuitive and immersive interface. We anticipate that this project will:

- Set a new standard for holographic interfaces by providing an unprecedented level of interactivity and realism.
  By combining advanced AI with precise particle manipulation, we aim to create a holographic experience that feels natural and engaging.
- Facilitate the broader adoption of holographic technology in various fields, such as augmented reality, virtual assistance, and human-computer interaction. By demonstrating the capabilities of our system, we hope to inspire new applications and innovations in these areas.
- Enhance both personal and professional interactions by integrating holographic projections into everyday life, offering a seamless blend of digital and physical experiences. By making holographic technology more accessible and user-friendly, we aim to transform how people interact with digital information.

The integration of holographic projection with advanced AI has the potential to propel us far beyond the current technological landscape, opening up new frontiers and possibilities for diverse applications. Here are a few key points elaborating on how this integration could shape the future of technology:

Immersive Communication and Telepresence: By leveraging advanced AI, holographic projections can potentially revolutionize remote communication and telepresence. Imagine lifelike holographic representations of individuals in remote locations, enabling more immersive and engaging interactions that transcend the limitations of traditional video conferencing. This advancement could significantly impact fields such as telemedicine, remote collaboration, and virtual presence.

Interactive Education and Training: The fusion of holographic technology with AI-driven interactivity can redefine educational and training experiences. Holographic AI assistants could guide users through interactive learning experiences, bringing complex concepts to life in three-dimensional space. This could have wide-ranging implications for fields such as medical training, engineering simulations, and immersive educational content delivery.

Enhanced Data Visualization and Augmented Reality: Advanced AI integration can enhance the capabilities of holographic projections for data visualization and augmented reality applications. By employing AI algorithms to process and interpret large datasets in real-time, holographic displays could provide dynamic and intuitive visualization of complex information, enabling users to explore and interact with data in unprecedented ways.

Personalized and Adaptive Interfaces: Holographic projections powered by AI can offer personalized and adaptive

interfaces tailored to individual user preferences and needs. This would enable a more intuitive and natural interaction with digital content, potentially transforming how users access and engage with information in areas such as entertainment, gaming, and digital content consumption.

Real-time Decision Support and Analysis: The integration of AI with holographic technology can lead to the development of systems that provide real-time decision support and analysis in various domains. For example, in professional settings, AI-powered holographic displays could present complex data analysis in a visually intuitive manner, facilitating quicker decision-making and problem-solving.

Multi-sensory Experiences and Spatial Computing: Advancements in AI-integrated holographic technology could pave the way for multi-sensory experiences and spatial computing. By leveraging AI algorithms to synthesize and present multi-modal sensory feedback, holographic displays may provide immersive experiences that engage multiple senses, offering new possibilities for entertainment, virtual environments, and artistic expression.

In essence, the convergence of holographic projection with advanced AI has the potential to transcend current technological capabilities, ushering in a future where immersive, interactive, and personalized experiences are seamlessly integrated into various aspects of our lives, work, and entertainment.

#### VI. SIMULATIONS

The initial step of conducting simulations forms a crucial foundation for the testing and design phases of our holographic technology project. Simulations allow us to explore and evaluate various aspects of the system in a controlled virtual environment, offering valuable insights and opportunities for advancement before the physical implementation phase.

Technical Validation and Optimization: Through simulations, we can rigorously evaluate critical technical aspects such as image quality, system responsiveness, and AI interaction capabilities. This validation process enables us to optimize components and algorithms, ensuring that the holographic system meets performance benchmarks and user experience standards.

Iterative Design Refinement: Simulations facilitate iterative design refinement by simulating diverse scenarios and use cases. This iterative approach allows us to fine-tune the integration of Holo-AI and the acoustic trapping system, addressing potential complexities and optimizing the overall design to achieve seamless functionality and reliability.

Scenario Modeling and Stress Testing: Simulations enable us to model various real world scenarios and stress test the holographic system's performance under different environmental conditions and user interactions. By simulating complex scenarios, we can identify potential challenges and develop adaptive solutions, thus enhancing the robustness and adaptability of the technology.

Cost and Time Optimization: Leveraging simulations for testing and design refinement helps optimize costs and time

associated with physical prototyping and testing. By identifying and addressing potential issues early in the development process, we can minimize resource expenditure and accelerate the advancement of the project timeline.

Enhancing Safety and Efficacy: The simulation phase plays a vital role in ensuring the safety and efficacy of the holographic technology. By simulating user interactions and environmental factors, we can proactively address safety considerations and refine the system to deliver a reliable and secure user experience.

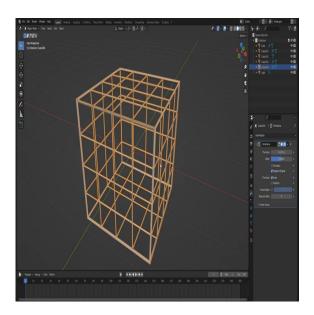



Fig. 1. A visualization of the room of  $20ft \times 20ft \times 20ft$ .

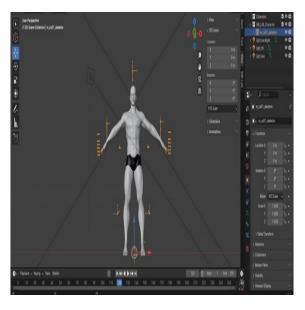



Fig. 2. A visualization of the physical form of the Holo-AI.

The image provided in Figure 1 is a visualization of the room of  $20ft \times 20ft \times 20ft$ . The image provided in Figure 2 is a visualization of the physical form of the Holo-AI. To

elaborate on the simulations, we utilized Blender to create a holographic projection simulation.

Why did we choose Blender? Blender provides us with powerful 3D modeling and animation software. This software is useful for visualizing the physics behind the holographic projections in several ways. They are the following:

Modeling Holographic Elements: Blender allows users to create complex 3D models and geometries with precision. Here we can design the model for the holographic displays, projectors, and other objects or scenes that are being projected as holograms.

Simulating Light and Optics: Blender can simulate light propagation and optics, which is crucial for understanding how holographic projections work. Here in the blender, you could simulate the behavior of light rays, diffraction patterns, and interference effects that are fundamental to holography.

Visualization of Holographic Principles: This feature within the blender helps us to visualize and demonstrate the interference patterns and spatial coherence, you can gain a deeper understanding of the underlying physics.

Integration with Physics Simulation: Blender also supports plugins and scripting that can integrate with physics simulations. This capability can be utilized to simulate interactions between holographic projections and physical objects, enhancing the realism and accuracy of the simulations.

Overall, Blender's versatility in simulations, and visualization makes it a valuable tool for studying and exploring the physics behind holographic projections.

How are we planning to use Blender for simulating the technology in the real world? We intend to simulate the projection within a confined environment, specifically a cube representing the room. The dimensions of the room are set at  $20ft \times 20ft \times 20ft$ . We intend to model up the holographic setup, understand optics and light simulation, and estimate and simulate interactions with physical objects using plugins and enhanced simulations inoperative to blender. The modeled projectors will be positioned at the intersection of the diagonals of the cube, on the ceiling and floor. We will also work on adjusting the projections and other related aspects.

In the future, we plan to make a computer-generated model using our integrated AI named Holo-AI and use it in conjunction with Matlab to accurately position the projections and other useful software like Unity Engine, which provides essential functionalities such as collision detection, 2D and 3D support and so on, which can be utilized for the simulation of the project.

This project is in its early stages and anticipated to be used as a reference to develop real life projection technology. In summary, the meticulous use of simulations for testing and design advancement provides a strategic advantage in the development of our holographic technology project. By leveraging simulations to iterate, refine, and optimize, we can confidently progress to the physical implementation phase with a well-validated and resilient foundation.

#### VII. POTENTIAL APPLICATIONS

In this section, we introduce the HTC use cases, which are classified into six categories, namely, holographic telepresence and conferencing, education and training, holographic healthcare, holographic entertainment, holographic remote assistance, and HTC forensics. It is impossible to enumerate all the HTC use cases. We select these use cases because they will generate profound impacts on the way we live. As the Network 2030 and 6G and beyond wireless systems become available, these use cases will stimulate technology innovations and create new business models.

Holographic Telepresence and Conferencing: Holographic telepresence will be one of the major applications of HTC. The users from different locations can meet as holograms. The HTC system at each location includes two major components, namely, the sensory booth and the holographic display. The sensory booth has cameras to generate point cloud of the user. Other sensors and actuators may also be installed to create and play multimedia. The holographic display shows the remote user's hologram. There is another format of holographic telepresence, where holograms are created by computers without the sensory booth. Consider the Whitney Houston Hologram Tour, where the singer's hologram is created by computers rather than using cameras to record the light field. Online shopping has significantly changed our lives, especially during a pandemic. However, it is always challenging to have an accurate idea about the size, color, smell, and many other attributes of online products by simply reading descriptions and looking at images or videos. HTC allows users to view the product with the same size, color, and 3D geometry. Some other senses such as the smell of flowers can also be delivered to HTC users. Advanced HTC systems can also allow users to get into a virtual shopping mall with many products. Users with smart gloves can pick up products and put them into a holographic cart. Such a kind of virtual shopping experience is hyperreal, where the user may not be able to distinguish it from in-person shopping. Videoconferencing has played an important role during the COVID-19 pandemic. It can bring users from any location to meet with each other virtually. The format of video conferences is drastically different from real in-person conferences. Videoconference users have to look at 2D screens which display remote users with reduced physical dimensions. Compared to videoconferences, HTC provides more immersive user experiences. The holographic display is large enough to display remote users with their real physical heights. Users may not be able to distinguish the difference between holographic conferences and real inperson conferences if the quality of experience is high enough. With smart gloves, holographic conferences can even support handshakes.

Education and Training: Similar to holographic conferencing, students and teachers can also meet using HTC. Besides telepresence, teaching materials can also be developed into holograms to engage students. Currently, students need the imagination to understand complex concepts, especially

3D concepts such as electromagnetic field propagation and gradients of high-order functions. With HTC, students can observe the 3D phenomena directly. Holograms are used to train nurses using Microsoft HoloLens. High-cost equipment and devices can also be converted into holograms, and students can virtually use them to reduce the cost.

Holographic simulations can also be used to create immersive and interactive learning experiences, allowing students to explore complex concepts in a more engaging and hands-on way. Holographic simulations can be used for training in fields such as aviation, engineering, and emergency response, providing realistic and interactive practice environments. Pilots could use holographic flight simulators to practice maneuvers and emergency procedures in a safe and controlled environment. Similarly, medical students could use holographic projections to study human anatomy in three dimensions, providing a deeper understanding than traditional two-dimensional images.

Furthermore, Holo-AI can assist in visualizing complex scientific data in three dimensions, allowing researchers to interact with and explore their data in new and innovative ways. This can lead to new insights and discoveries, particularly in fields such as molecular biology, astrophysics, and environmental science.

Holographic Healthcare: Holographic projections can assist in medical training and diagnostics, providing detailed and interactive visualizations of anatomical structures and medical procedures. Surgeons could use holographic guides during operations to visualize complex anatomical structures and enhance precision.

HTC can also support remote healthcare. For example, for contagious diseases, the doctor and the patient can communicate using HTC without any direct contact. HTC can provide richer information than remote doctor visits using videos. Besides looking at the patient's face, the doctor can also observe the patient's behavior through a holographic display. The doctor can check the patient's body with smart gloves. On the patient's side, sensor and actuator arrays are required to collect haptic signals. Moreover, remote surgery can be conducted with robots. The doctor can see a hologram of the patient and perform surgery on the hologram. The actions of the doctor can be replicated by a robot on the patient's side. Currently, doctors have adopted holograms to assist surgery. Remote transmission of holograms will make healthcare more accessible.

Holographic Entertainment: Entertainment can provide more immersive experiences using HTC than using 2D screens. Television, sports broadcasting, and gaming can be drastically changed. The holographic content, such as news, advertisement, and movies, can be broadcast using HTC technologies by providers. Advanced holographic displays, such as the light field display, can be used by end users as a television. Compared to existing 2D televisions, holographic television provide hyperreal 3D content.

Sports broadcasting using 2D screens is widely used. However, users have to follow the view of the camera, and there is no way to see other players outside of the view of the camera. Holographic sports broadcasting can provide a 3D overview from any angle. Consider that a soccer pitch can be projected on a coffee table with a flat holographic display on top. Users can see 3D players with reduced size. Instead of looking at a single or a few players, users can see the whole pitch as if they were in the stadium. An example of using Extended Reality Head-mounted Displays (XR HMDs) to display the 3D players on a table. Similarly, any sports such as badminton, tennis, and boxing can be broadcast using HTC.

Holographic gaming can be non-immersive or immersive. The non-immersive holographic gaming uses holographic displays, e.g., a flat holographic display on a table. Users can control holograms of characters, balls, cars, and airplanes. However, for non-immersive holographic gaming, users must leverage controllers, keyboards, and other tools as inputs. Users can play non-immersive holographic gaming with naked eyes or they can use XR HMDs, specifically, augmented reality and mixed reality glasses, to observe holograms. The immersive holographic gaming is played in a virtual world. Users can use occluded holographic displays to get into a virtual world without seeing the real surrounding environment. Users can play games as if they were the characters in the game. Note that, immersive holographic gaming can also be realized by using Virtual Reality (VR) devices. Users with VR HMDs can observe virtual holographic characters and environments through the near-eye display. The VR HMD is different from the holographic display. Only users with the HMD can observe the holographic content, while the light field display allows any user in front of the display to see the holographic content.

Holographic Remote Assistance: HTC remote assistance can find many applications. Consider that when a user needs assistance to fix appliances, cars, or any machines, remote technical support can only describe the solutions via a phone. It is hard to relate the description to the real location of the problem. Although videos provide better illustration, the size and angle of view make the interpretation challenging. HTC can display the problem location in 3D with real size. Technical support can show a demo to fix the problem. It is easy for users to follow the procedure, which significantly improves the efficiency of after-sales services.

HTC Forensics: Holographic technology can be used to recreate crime scenes in three dimensions, allowing forensic experts to analyze and interpret evidence with greater accuracy and detail. Holo-AI can assist in identifying patterns and correlations in the data, leading to more effective investigations and a higher likelihood of solving cases.

# VIII. CHALLENGES AND FUTURE DIRECTIONS

Despite the promising potential, there are several challenges that must be addressed to realize the full potential of this technology:

Technical Complexity: The integration of advanced AI with holographic displays involves significant technical challenges, including the need for high computational power, precise synchronization of hardware and software, and ensuring realtime performance. Overcoming these challenges is critical for the successful deployment of AI holographic assistants. Research is needed to develop more efficient algorithms, improve hardware capabilities, and ensure seamless integration of AI and holographic technologies.

User Experience: Ensuring a seamless and intuitive user experience is critical for the adoption of holographic technology. This involves not only technical performance but also user interface design and usability testing. We will conduct extensive user testing and incorporate feedback to refine the user experience.

Cost and Accessibility: The cost of developing and deploying advanced holographic systems can be prohibitive. To address this, we will explore cost-effective materials and manufacturing processes, as well as potential economies of scale for mass production.

Ethical and Privacy Concerns: The use of AI holograms raises ethical and privacy concerns, particularly regarding data security and user privacy. It is essential to address these issues through robust security measures and transparent policies. Ensuring that AI holograms are designed and used ethically involves protecting user data, preventing misuse, and ensuring that the technology is accessible and beneficial to all.

Potential Future Advancements: Future advancements in AI and holography could lead to more sophisticated and capable holographic assistants. These advancements might include improvements in AI algorithms, more efficient holographic display technologies, and better integration methods. Research in quantum computing, for example, could provide the computational power needed for more advanced AI holograms, while developments in materials science could lead to more realistic and responsive holographic displays.

Societal Impact and Acceptance: The widespread adoption of AI holographic assistants will depend on societal acceptance and the perceived benefits of the technology. Public education and engagement will be crucial in addressing concerns and highlighting the potential advantages of this innovation. Ensuring that the technology is developed and deployed responsibly will be key to gaining public trust and acceptance.

#### IX. CONCLUSIONS AND DISCUSSIONS

The primary research question addressed in this paper is *How can we make AI-integrated holographic assistants a reality?*. This research bridges the gap between science fiction and reality, setting a new benchmark for the future of holographic technology. By pushing the boundaries of what is technologically possible, we envision a future where holographic projections become an integral part of everyday life, enhancing both personal and professional domains with exceptional interactivity and efficiency. Our work not only advances the field of holography but also opens new avenues for innovative applications, transforming how we interact with digital information and environments.

This paper has explored the potential of integrating AI with holography to create intelligent, interactive assistants. We have reviewed the historical development of these technologies, discussed their production methods, and examined their potential applications. The integration of AI and holography represents a significant technological advancement with the potential to transform various fields.

Integrating AI with holography represents a significant technological advancement with the potential to transform various fields, from healthcare to entertainment. By combining the immersive experience of holograms with the cognitive abilities of AI, we can create powerful and intuitive tools. These tools can enhance productivity, improve decision-making, and provide new and innovative solutions to complex problems.

To make AI-integrated holographic assistants a reality, continued research and development are essential. This includes addressing technical challenges, ethical considerations, and societal impacts. Future research should focus on improving the integration of AI and holography, exploring new applications, and ensuring the responsible use of this technology. Collaboration between researchers, industry professionals, and policymakers will be crucial in advancing this field and realizing the full potential of AI-integrated holographic assistants.

## X. ACKNOWLEDGMENT

The support provided by the Presidency University, Bengaluru is gratefully acknowledged by the authors.

#### REFERENCES

- A. Clemm, M. T. Vega, H. K. Ravuri, T. Wauters, and F. D. Turck, "Toward truly immersive holographic-type communication: challenges and solutions," *IEEE Commun. Magazine*, vol. 58, no. 1, pp. 93–99, Jan. 2020.
- [2] J. An, et al., "Slim-panel holographic video display," *Nature Commun.*, vol. 11, no. 1, pp. 1–7, Nov. 2020.
- [3] R. Zhao, L. Huang, and Y. Wang, "Recent advances in multi-dimensional metasurfaces holographic technologies," *PhotoniX*, vol. 1, pp. 1–24, Dec. 2020.
- [4] Y. Wan, C. Liu, T. Ma, Y. Qin, and S. Lv, "Incoherent coded aperture correlation holographic imaging with fast adaptive and noise-suppressed reconstruction," *Optics Express*, vol. 29, no. 6, pp. 8064–8075, Mar. 2021.
- [5] X. Huang, F. Wild, and D. Whitelock, "Design dimensions for holographic intelligent aents: a comparative analysis," in Proc. of the 1<sup>st</sup> Int. Workshop on Multimodal Artificial Intelligence in Edu. (MAIED 2021), Online, pp. 1–10, June 2021.
- [6] S. Davies, Y. Hu, N. Jiang, J. Blyth, M. Kaminska, Y. Liu, and A. K. Yetisen, "Holographic sensors in biotechnology," Adv. Functional Materials, vol. 31, no. 47, pp. 1–24, Nov. 2021.
- [7] R. Deng, B. Di, H. Zhang, D. Niyato, Z. Han, H. V. Poor, and L. Song, "Reconfigurable holographic surfaces for future wireless communications," *IEEE Wireless Commun.*, vol. 28, no. 6, pp. 126–131, Dec. 2021.
- [8] J. Li, Q. Smithwick, and D. Chu, "Holobricks: modular coarse integral holographic displays," *Light: Science & Applications*, vol. 11, no. 1, pp. 1–15, Mar. 2022.
- [9] A. Haleem, M. Javaid, R. P. Singh, R. Suman, and S. Rab, "Holography and its applications for industry 4.0: an overview," *Internet of Things* and Cyber-Physical Syst., vol. 2, pp. 42–48, May 2022.
- [10] D. Pi, J. Liu, and Y. Wang, "Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display," *Light: Science & Applications*, vol. 11, no. 1, pp. 1–17, July 2022.
- [11] G. Situ, "Deep holography," *Light: Adv. Manufacturing*, vol. 3, no. 2, pp. 1–23, Oct. 2022.
- [12] Y. Huang, Y. Zhu, X. Qiao, X. Su, S. Dustdar, and P. Zhang, "Toward holographic video communications: a promising AI-driven solution," *IEEE Commun. Magazine*, vol. 60, no. 11, pp. 82–88, Nov. 2022.

- [13] J. Park, "Virtual technology in netflix K-drama: augmented reality, hologram, and artificial intelligence," Int. J. of Commun., vol. 17, pp. 130-148, Jan. 2023.
- [14] X. Huang, "Development of human-computer interaction for holographic
- AIs," *Doctoral Dissertation, The Open University*, pp. 1–253, Mar. 2023. [15] A. Adhikary, M. S. Munir, A. D. Raha, Y. Qiao, Z. Han, and C. S. Hong, "Integrated sensing, localization, and communication in holographic MIMO-enabled wireless network: a deep learning approach," IEEE Trans. on Network and Service Management, vol. 21, no. 1, pp. 789-809, Feb. 2024.
- [16] H. Zhou and F. Wei, "Innovative research on constructing a holographic sports intelligent classroom based on AI technology," in Proc. of the  $3^{rd}$ Int. Conf. on Edu. Innovation and Multimedia Technol. (EIMT 2024), Wuhan, PRC, pp. 1-8, Mar. 2024.
- [17] R. Petkova, I. Bozhilov, A. Manolova, K. Tonchev, and V. Poulkov, "On the way to holographic-type communications: perspectives and enabling technologies," IEEE Access, vol. 12, pp. 59236-59259, Apr. 2024.